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Abstract

We have derived a generalized equation for correlating the morphological parameters (matrix ligament thickness, particle spatial dis-
tribution parameter, mean particle size, particle size distribution and particle volume fraction) of polymer blends with particles obeying the
log-normal size distribution. The particle spatial distribution parameters for eight regular lattices and three actual morphologies have been
calculated. The particle spatial distribution parameter for the morphology of well-dispersed particles is between 1 and ca. 1.2, and is larger
than those for the pseudonetwork morphology and the morphology of agglomerated particles. The relationships between the particle spatial
distribution parameters defined in this work and those given in the literature are discussed.q 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

v2 /BCG (see Fig. 1)

v3 /EAB (see Fig. 1)

v4 Inclination angle of right-side plane to the horizontal (see Fig. 1)

0 The subscript zero denotes a regular lattice

1 The subscript one denotes the morphology of well-dispersed
particles

2 The subscript two denotes the pseudonetwork morphology

3 The subscript three denotes the morphology of agglomerated
particles

l 0(1) Edge length of a unit cell for uniform-sized particles occupying a
regular lattice

l 0(j) Edge length of a unit cell for particles occupying a regular lattice
and obeying the log-normal distribution

0032-3861/99/$ - see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0032-3861(98)00533-3

* Corresponding author. Tel.: +852-27887785; Fax: +852-27887830;
E-mail: aprkyl@cityu.edu.hk

l ` Edge length of a huge box

m Number of particles in a unit cell

nn(1) Number of uniform-sized particles in a huge box

nn(j) Number of particles in a huge box that obey the log-normal
distribution

Vcell Volume of a unit cell

a Constant in Eq. (5)

L Arithmetic average center to center interparticle distance

L0(1) Arithmetic average center to center interparticle distance for
uniform-sized particles occupying a regular lattice

L0(j) Arithmetic average center to center interparticle distance for
particles occupying a regular lattice and obeying the log-normal
distribution

L2D Arithmetic average center to center interparticle distance
in 2D

L3D Arithmetic average center to center interparticle distance
in 3D
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1. Introduction

Many different equations for correlating the morphologi-
cal parameters of spherical particle filled polymer systems
have been proposed [1–18], and have been used to obtain
relationships between material properties and the morpho-
logical parameters, such as that between the impact strength
of polymer blends and the arithmetic average matrix liga-
ment thickness (arithmetic average surface to surface inter-
particle distance) [11,12,19–26], between the impact
strength of polymer blends and the arithmetic average
matrix ligament thickness and particle spatial distribution
parameter [16,27–29], between the toughening and stiffen-
ing efficiency and the arithmetic average matrix ligament
thickness and particle spatial distribution parameter [30],
between the impact strength of polymer blends and the par-
ticle position parameter [17,18,31] and between the electri-
cal resistivity and the particle volume fraction and ratio of
the radius of polymer particles to that of metal particles [1].
Clearly, different equations lead to different morphology–
property relationships. Too simple an equation may neglect
the important effects of some morphological parameters.
For instance, the equation that relates only the arithmetic
average matrix ligament thickness to the geometric mean
particle size and volume fraction neglects the influences of
geometric mean particle size distribution [25,26] and par-
ticle spatial distribution [16,27–29]. Recently we derived
several new equations for correlating morphological para-
meters that are much more adequate than others for describ-
ing the relations of parameters of polymer blends with

L1 Arithmetic average center to center interparticle distance for the
morphology of well-dispersed particles

L2 Arithmetic average center to center interparticle distance for the
pseudonetwork morphology

L3 Arithmetic average center to center interparticle distance for the
morphology of agglomerated particles

T Arithmetic average matrix ligament thickness (surface to surface
interparticle distance)

T0(1) Arithmetic average matrix ligament thickness for uniform-sized
particles occupying a regular lattice

T0(j) Arithmetic average matrix ligament thickness for particles
occupying a regular lattice and obeying the log-normal
distribution

T2D Arithmetic average matrix ligament thickness in 2D

T3D Arithmetic average matrix ligament thickness in 3D

DT1,yp Error ( ¼ T2D ¹ T3D) of T1 arising from the reduction of
dimension from 3D to 2D

d Geometric mean particle size defined by the log-normal
distribution

j Geometric mean particle size distribution parameter defined by
the log-normal distribution

f Particle volume fraction in the sample

fev Excluded volume fraction in the sample

V Volume of particles in the sample

Vpc Volume of the matrix contributing to the particle cluster phase in
the total sample

Vev Excluded volume in the sample

fmax Maximum particle volume fraction for uniform-sized particles

F2 Volume fraction of dispersed particles in the imaginary blend
with the morphology of well-dispersed particles (for the
pseudonetwork morphology)

F3 Volume fraction of dispersed particles in the imaginary blend
with the morphology of well-dispersed particles (for the mor-
phology of agglomerated particles)

y0 Geometric constant calculated from Eq. (7) and an absolute
particle spatial distribution parameter for a regular lattice

y1 Relative particle spatial distribution parameter for the mor-
phology of well-dispersed particles (the ratio ofL1 for the
morphology of well-dispersed particles toL0 for the regular
lattice whend, j andf are identical)

y2 Relative particle spatial distribution parameter for the pseudo-
network morphology (the ratio ofL2 for the pseudonetwork
morphology toL1 for the morphology of well-dispersed particles
whend, j andf are identical)

y3 Relative particle spatial distribution parameter for the
morphology of agglomerated particles (the ratio ofL3 for the
morphology of agglomerated particles toL1 for the morphology
of well-dispersed particles whend, j andf are identical)

y* Absolute particle spatial distribution parameter for the
morphology of well-dispersed particles

Dy* Error of y* (calculated from Eq. (19)) defined by Eq. (25)

y** Absolute particle spatial distribution parameter for the
pseudonetwork morphology

y*** Absolute particle spatial distribution parameter for the
morphology of agglomerated particles

y Generalized absolute particle spatial distribution parameter in
Eq. (43)

dn Standard deviation of the particle spatial distribution parameter
in small volumes or areas of a mixture defined by Eq. (45)

P Position distribution parameter defined by Eq. (46)

Fa Area fraction of agglomerates defined by Eq. (49)

NPP Agglomeration index (the number of primary particles in the
particle agglomerate) defined by Eq. (50)
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particles obeying the log-normal size distribution. However,
some improvements on these new equations are still needed.

The arithmetic average matrix ligament thickness
[11,12,19–30], along with the particle dispersion parameter
[16–18,27–39], are more important than other morphologi-
cal parameters (average particle size, particle size distribu-
tion and particle volume fraction) in controlling the impact
toughness of polymer blends and composites. The particle
dispersion for the polymer blends with spherical particles
conforming to the log-normal size distribution can be char-
acterized by a particle spatial distribution parameter that is a
new morphological parameter defined recently by the
authors [14–16,27–30]. The morphology of well-dispersed
particles and the pseudonetwork morphology are important
due to their high toughening efficiency.

A new equation for correlating the morphological para-
meters of polymer blends with the morphology of well-
dispersed particles, i.e., the arithmetic average matrix
ligament thickness, the average particle size, particle size
distribution and particle volume fraction, has been derived
based on the simple cubic (sc) lattice assumption [13]. How-
ever, the sc lattice assumption leads to an error in the aver-
age matrix ligament thickness that can be as high as 30%
[15]. Moreover, morphological observations also do not
agree with this assumption. In the first paper of the present
series we tried to correct the error by introducing a particle
spatial distribution parameter [15]. It is interesting to note
that the particle spatial distribution parameters calculated
from the observed morphological parameters for several
different polymer blends lie in the narrow range of 1.16 to
1.21. It is well known that direct measurements of the
matrix ligament thickness from scanning electron micro-
graphs (SEMs) may not give the true three dimensional
(3D) values. Therefore, the experimental particle spatial
distribution parameters obtained may not be reliable.
Another problem arising from the sc lattice assumption is
that the maximum particle volume fraction [39] for equal-
sized particles is 0.524, so the new equation is invalid when
the particle volume fraction for equal-sized particles is
higher than 0.524.

It has been demonstrated that the toughening efficiency
for polyvinyl chloride (PVC)/nitrile rubber (NBR) blends
with the pseudonetwork morphology is much higher than
that for PVC/NBR blends with the morphology of well-
dispersed particles [16,27–29]. Based on the above new
equation for the morphology of well-dispersed particles
[13], we obtained another new equation for correlating the
morphological parameters of the polymer blends with the
pseudonetwork morphology [14]. Using the relationship
between the impact toughness and the matrix ligament
thickness and particle spatial distribution parameter, the
increased toughening efficiency has been attributed to
the smaller particle spatial distribution parameter for the
pseudonetwork morphology [16,27–29].

It is well known that the toughening efficiency for the
morphology of agglomerated particles is much lower than

that for the morphology of well-dispersed particles. So, this
morphology is seldom studied quantitatively. However,
some new insights may be found by considering this
morphology. For example, it is not known whether the mor-
phology is adequately characterized by the particle spatial
distribution parameters defined in this work and in the
literature [4–10,17,18]. Consequently the relations between
the morphological parameters for the morphology of
agglomerated particles should be known.

In this work, we calculate the particle spatial distribution
parameters for eight regular lattices and three actual
morphologies. The particle spatial distribution parameters
for the pseudonetwork morphology and the morphology of
agglomerated particles are quantitatively related to the par-
ticle spatial distribution parameter for the morphology of
well-dispersed particles. A generalized equation for corre-
lating the morphological parameters of polymer blends or
composites with spherical particles obeying the log-normal
size distribution is derived. The relationships between the
particle spatial distribution parameters defined by us and by
other investigators are discussed.

2. A generalized equation

2.1. The regular lattice system

Fig. 1 schematically shows a unit cell for some regular
arrangements. There are eight vertices (A, B, C, D, E, F, G
and H), six faces and twelve edges of equal length for the
unit cell. The centers of eight hard spheres are located at the
eight vertices, respectively. The structural characteristics of
different regular configurations are listed in Table 1.

For spheres satisfying the log-normal size distribution,
the arithmetic average center to center interparticle distance
L is given by [14,15]

L ¼ T þ d exp 0:5 ln2j
ÿ �

(1)

whereT is the arithmetic average matrix ligament thickness
(surface to surface interparticle distance),d is the geometric
mean particle size,j is the geometric mean particle size

Fig. 1. A unit cell for a regular lattice.
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distribution parameter, andj $ 1. Eq. (1) is applicable to
any particle spatial distribution.

For the case of equal-sized spheres occupying a regular
lattice, we have

T0(1) ¼ L0(1) ¹ d (2)

where the subscript zero denotes a regular lattice.T0(1) and
L0(1) but notd depend on the particle spatial distribution.

The volume of a unit cell is

Vcell ¼ l0(1)3 sin v2 sin v3 sin v4 (3)

wherev2 is /BCG, v3 is /EAB, v4 is the inclination angle
of right-side plane to the horizontal andl 0(1) is the edge
length of the unit cell (see Fig. 1).

The particle volume fractionf is thus given by

f ¼
pmd3

6Vcell
(4)

wherem is the number of spheres in one cell.
For a unit cell having edges of equal length, we have

L0(1) ¼ al0(1) (5)

where a is a constant which is dependent on theL0(1)
considered.

Combination of Eqs. (3)–(5) gives

L0(1) ¼ a
m

sin v2 sin v3 sin v4

� � 1
3
d

p

6f

� � 1
3
: (6)

Let

y0 ¼ a
m

sin v2 sin v3 sin v4

� � 1
3
: (7)

From Eqs. (2), (6) and (7), we obtain

T0(1) ¼ d y0
p

6f

� � 1
3
¹ 1

24 35: (8)

Eq. (7) indicates thaty0 is a geometric constant. Moreover,
Eq. (8) suggests thaty0 depends on the particle dispersion
and is thus a particle spatial distribution parameter. Eq. (8)
is also applicable to the body-centered cubic (bcc) or face-
centered cubic (fcc) lattices though their unit cells are dif-
ferent from that presented in Fig. 1.

The values ofy0 for 8 different regular arrangements
corresponding to some values ofa are listed in Table 1. It
should be noted thatL0(1) is not necessarily equal tol 0(1).
For instance, there are at least three different values (corre-
sponding to the line segments AD, AC and AG) ofL0(1) in
the case of particles occupying a sc lattice. For a sc latticey0

¼ 1, 1.414 and 1.732 fora ¼ 1 (L0(1) ¼ the length of line
segment AD),a ¼ 1.414 (L0(1) ¼ the length of line segment
AC) anda ¼ 1.732 (L0(1)¼ the length of line segment AG),
respectively. The coordination number of a sc lattice is 6. In
other words, the number of nearest particles for this lattice is
6, a ¼ 1, andy0 ¼ 1. If the 12 second nearest particles are
also considered, the total nearest particle number is 6þ 12
¼ 18, and the corresponding average values ofa andy0 are
[l 0(1) 3 (6 þ 12 3 1.414)/18]/l 0(1) ¼ 1.238 and 1.238. If
the 8 third nearest particles are also considered, the total
nearest particle number is 6þ 12 þ 8 ¼ 26, and the corre-
sponding average values ofa andy0 are [l 0(1) 3 (6 þ 123
1.414þ 8 3 1.732)/26]/l 0(1) ¼ 1.416 and 1.416. Therefore
y0 depends ona, as predicted by Eq. (7), and both of them

Table 1
Particle spatial distribution parameters for some morphologies

Morphology v1 v2 v3 v4 m fmax aa y0 y*

sc 908 908 908 908 1 0.524d 1 1
1.238 1.238
1.414 1.414
1.416 1.416
1.732 1.732

Orthorhombic (square layer)b 608 908 908 608 1 0.605d 1 1.05
Rhombohedral (square layer)b 608 608 908 548449 1 0.74d 1 1.12
Orthorhombic (simple-rhombic layer)b 908 908 608 908 1 0.605d 1 1.05
Tetragonal-sphenoidal (simple-rhombic layer)b 608 1048299 608 638269 1 0.699d 1 1.10
Rhombohedral (simple-rhombic layer)b 608 908 608 708329 1 0.74d 1 1.07
bcc 908 908 908 908 2 0.68e 0.866 1.09
fcc 908 908 908 908 4 0.74e 0.707 1.12
rcp 0.638e 1.07f

Well-dispersed particlesc

A PVC/NBR blend 1.21
A PP/EVA blend 1.18
A PP/EPDM blend 1.16

a Only partial results are given.
b The angle values are taken from Ref. [40].
c Data from Ref. [15].
d The maximum particle volume fractions for uniform-sized particles are taken from Ref. [40].
e Data from Ref. [42].
f Calculated from Eq. (19) forT ¼ 0 andj ¼ 1.
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depend on the nearest particle number used in the evaluation
of average values, even for a fixed lattice type. It is clear that
a andy0 increase with the nearest particle number. Although
the nearest particle number for a sc lattice increases quickly
from 6 to 26, the increase ina andy0 is rather slow (from 1 to
1.416). Some values ofy0 for other regular lattices are listed
in Table 1. It is found thaty0 can be identical even if the
lattices are different. For example, they0 value for both the
rhombohedral lattice and the fcc lattice is 1.12.

For the polydisperse sizes of particles conforming to the
log-normal distribution, the relationship betweenT0(j) and
T0(1) is [13]

T0(j) ¼ T0(1) þ d
� �

exp 1:5 ln2j
ÿ �

¹ exp lndþ 0:5 ln2j
ÿ �

:

(9)

Here we show that Eq. (9), which was derived by assuming
that the particles occupy a sc lattice [13], is also applicable
to the other regular lattices listed in Table 1. In other words,
it is independent of the type of regular lattice. We assume
that there is a huge box with twelve edges of equal length
(The length of each edge isl `. So,l `/l 0(1)q 1), where there
arenn(1) equal-sized particles, andnn(1)/munit cells. When
d andf are identical, the particle numbernn(j) for particle
sizes obeying the log-normal distribution in the same box is
given by [13]

nn(j) ¼ nn(1)exp ¹ 4:5 ln2j
ÿ �

: (10)

We have pointed out that Eq. (10) is applicable to any
lattice. We construct another unit cell that has the same
type of lattice as the above unit cell for the monodisperse
size of particles but with different edge length. However, the
length l 0(j) (l `/l 0(j) q 1) of each edge of the unit cell for
the polydisperse sizes of particles is greater thanl 0(1) since
nn(j) decreases with increasingj(nn(j) # nn(1)), so that all
these enlarged unit cells can just fill up the huge box. So, the
following relation exists

l` ¼ 3

�����������
nn(1)

m

r
l0(1) ¼ 3

�����������
nn(j)

m

r
l0(j): (11)

From Eqs. (10) and (11), we have
l0(j)
l0(1)

¼ exp 1:5 ln2j
ÿ �

: (12)

The relationship ofL0(1) with l 0(1) is
L0(j) ¼ al0(j): (13)

Combination of Eqs. (2), (5), (12) and (13) yields

L0(j) ¼ L0(1)exp 1:5 ln2j
ÿ �

¼ T0(1) þ d
� �

exp 1:5 ln2j
ÿ �

:

(14)
For the polydisperse sizes of particles, the sum of Eq. (1) gives

L0(j) ¼

∑N
i ¼ 1

niLi

∑N
i ¼ 1

ni

¼

∑N
i ¼ 1

niTi

∑N
i ¼ 1

ni

þ

∑N
i ¼ 1

nidi

∑N
i ¼ 1

ni

¼ T0(j) þ

∑N
i ¼ 1

nidi

∑N
i ¼ 1

ni

:

(15)

Becaused is identical and particle sizes obey the log-normal
distribution, we have [13]∑N
i ¼ 1

nidi

∑N
i ¼ 1

ni

¼ exp lndþ 0:5 ln2j
ÿ �

: (16)

Combining Eqs. (14)–(16) and rearranging, we also obtain
Eq. (9).

Insertion of Eq. (8) into Eq. (9) yields

T0(j) ¼ d y0
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35:

(17)

Eq. (17) gives the exact relation betweenT0(j) andd, j, f

and y0 for the blends with spheres occupying a regular
lattice and conforming to the log-normal distribution.

2.2. The morphology of well-dispersed particles

The morphology of well-dispersed particles is schemati-
cally pictured in Fig. 2, where the dark dots denote the
dispersed particles and the white area in the frame indicates
the polymer matrix. This morphology may be described by
the fact that the probability of finding a particle in the poly-
mer matrix for this morphology is not zero [14].

We define the relative particle spatial distribution for the
morphology of well-dispersed particles by the parameter

y1 ¼
L1

L0
(18)

where the subscript ‘1’ indicates the morphology of well-
dispersed particles.

Fig. 2. The morphology of well-dispersed particles.
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The relative particle spatial distribution parametery1 is
the ratio of L1 for the morphology of well-dispersed
particles toL0 for the regular lattice whend, j andf are
identical. The difference between the morphology of well-
dispersed particles and a regular lattice can be corrected by
usingy1. Because Eq. (1) for evaluatingL is applicable to
any lattice, we can use Eq. (18) and other equations to derive
Eq. (19) given below without reconstructing a unit cell in
Fig. 2.

Combination of Eqs. (1), (2), (17) and (18) yields

T1 ¼ d yp p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35 (19)

yp ¼ y0y1 (20)

wherey* is the absolute particle spatial distribution para-
meter for the morphology of well-dispersed particles.

Combination of Eqs. (1), (17), (18) and (20) yields

yp ¼
T1 þ d exp 0:5 ln2j

ÿ �
T0(j) þ d exp 0:5 ln2j

ÿ �¼
L1

d
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �:

(21)

Eq. (21) shows thaty* is independent of the morphological
parameters (a, l 0, m, v2, v3, v4, L0 andy0) of a regular lattice.
So, the morphology of well-dispersed particles can be simu-
lated by using any regular lattice. But, we must considerf

since it determines the validity of the definition ofy1 by
Eq. (18). This point is explained as follows.

The relations between morphological parameters for the
blends with the morphology of well-dispersed particles can
be exactly expressed by Eq. (19). The definition ofy1 in
Eq. (18) is generally valid for this morphology, which is
different from the definition in Ref. [15] whereL0 is asso-
ciated with a sc lattice fora ¼ 1. The failure of the earlier
definition ofy1 can be easily seen by considering the close
packing of equal-sized spheres. The maximum volume frac-
tion fmax for equal-sized spheres occupying a sc lattice is
0.524. So, if the earlier definition ofy1 is employed, Eq. (19)
will be invalid whenf is higher than 0.524. A number of
regular lattices that have higherfmax are listed in Table 1.
These lattices provide Eq. (18) with alternativefmax for
close packing of equal-sized spheres. For actual polymer
blends with the morphology of well-dispersed particles,y*
may be approximately constant. If so, it is convenient to use
Eq. (19) and other equations containingy*.

Our simulations in this work show that the equation for
any lattice takes the same form as Eq. (19). We know thaty*
for the morphology of well-dispersed particles is greater
than one [15]. We may obtain the maximum value ofy*
from Eq. (19) if other parameters are measured experimen-
tally. We have calculated the values ofy* for poly(vinyl
chloride) (PVC)/nitrile rubber (NBR), polypropylene (PP)/
EPDM and PP/EVA blends [15]. The values calculated from

Fig. 3. SEM micrographs for (a) PVC/NBR; (b) PP/EPDM and (c) PP/EVA
blends.
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Eq. (19) are 1.21, 1.18 and 1.16, indicating that the
morphology of well-dispersed particles deviates from a sc
lattice. Fig. 3a–3c show the SEM pictures for PVC/NBR
(Fig. 3a), PP/EPDM (Fig. 3b) and PP/EVA (Fig. 3c) blends.
Because the dispersed particles were removed [13], they
appear dark in these pictures.

These calculated results are greater than the actual values,
as will be explained below. Fig. 4 schematically illustrates
the errors of the experimental valuesL2D (arithmetic
mean center to center interparticle distance in two dimen-
sions) andT2D (arithmetic mean surface to surface inter-
particle distance in 2D) from the real three-dimensional
values,L3D (arithmetic mean center to center interparticle
distance in 3D) andT3D (arithmetic mean surface to sur-
face interparticle distance in 3D). Let us assume that all
particle centers in this figure are located on the same
plane, for instance the present paper plane. The neigh-
bors of sphere D are spheres A, C and E. The dashed
line represents the cryo-fracture surface for SEM obser-
vation or the microtomed surface for TEM observation
(The two surfaces are perpendicular to the present paper
plane). The spheres A and C disappear on the SEM or
TEM pictures. The spheres B, D and E can be observed
while the observation surface does not cut through their
centers. The sphere B is not a neighbor of sphere D.
Therefore the lengths ofL2D,BD and T2D,BD given by the
dashed line segments are longer than the dotted line
segmentsL3D,BD and T3D,BD. Although spheres D and E
are neighbors, the measured dashed line segmentL2D,DE

is shorter than the dotted line segmentL3D,DE. The mea-
sured dashed line segmentT2D,DE is longer than the
dotted line segmentT3D,DE.

In general, the above analysis suggests that for any two
neighboring particles

T2D, i $ T3D, i (22)

where the subscripti ¼ 1,2,...,n. T2D,i ¼ T3D,i only when the
observation surface cuts through two neighboring particles.

Because the observation surface does not always cut
through sphere centers

T2D, j . T3D, j (23)

where the subscriptj , i and is a positive integer.

Thus

T2D ¼

∑N
i ¼ 1

niT2D, i

∑N
i ¼ 1

ni

. T3D ¼

∑N
i ¼ 1

niT3D, i

∑N
i ¼ 1

ni

: (24)

ClearlyT2D will be greater if aT2D,k (where the subscriptk
(,i) is a positive integer) for any two non-neighboring par-
ticles is included in the calculation ofT2D.

So, the real value ofy* should be evaluated from Eq. (18)
whereL1 ¼ L3D or from Eq. (21) whereT1 ¼ T3D.

However it is difficult to tell which ofL2D or L3D is greater
because someL2D,i s may be larger than theirL3D,i s while
some others may be smaller than theirL3D,i s. Consequently
calculatingy1 andy* using L2D may not give the real value
of y*.

Now we analyze the effect of the errorDT1,yp (where ‘D’
denotes error) ofT1 arising from the reduction of dimension
from 3D to 2D onDy* becauseDy* determines if there is an
approximate constanty*. Dy* is defined by

Dyp ¼
T2D ¹ T3D

d
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �¼

DT1,yp

d
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �:

(25)

For different polymer blends,DT1,yp may change dramati-
cally. The effect of the errorDT1,yp on Dy* can be more
simply analyzed by the relative errorDT1,yp /T2D. The rela-
tionship ofDy* with DT1,yp =T2D is given by

Dyp ¼
T2D

d
p

6f

� � 1
3
exp 1:5 ln2j
ÿ � DT1,yp

T2D

� �
: (26)

The effects ofDT1,yp =T2D in PVC/NBR, PP/EPDM and PP/
EVA blends are analyzed based on Eq. (26) and the data in
Table 2. Drawing scalene triangles connecting the centers of
adjacent particles on SEM or TEM micrographs to measure
T2D,i had been suggested [40] and was previously used for
PVC/NBR, PP/EPDM and PP/EVA blends by the authors
[13]. We think that the longer theT2D,i value the greater the
possibility that it is actually aT2D,k. So we measure a higher
number of smallerT2D,i values in order to reduce the number
of T2D,k. Because an observation surface of SEM or TEM
does not always cut through the centers of dispersed parti-
cles, there is also an error ind andj from the reduction of
dimension (from 3D to 2D). There have been theories deal-
ing with this problem [41]. This error for the values ofd and
j for these blends reported in Ref. [13] has been corrected.
The values ofT2D were directly used to calculatey* from
Eq. (19) without any correction [15]. Using the data in
Table 2 and Eq. (26), we obtain Fig. 5, showing the calcu-
lated variations ofDy* with DT1,yp =T2D for PVC/NBR, PP/
EPDM and PP/EVA blends.Dy* generally increases with
DT1,yp =T2D. An error of 40% should be large enough for

Fig. 4. Schematic illustration of the relations of center to center interparticle
distance and of surface to surface interparticle distance to their real values.
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DT1,yp =T2D. This large error can only result in a small error
of ca. 0.2–0.3 forDy*. Thus, the calculated values ofy* for
these blends are only ca. 0.2–0.3 greater than their real
values. Because their real values are greater than one [15],
y* for the morphology of well-dispersed particles is
between 1 and ca. 1.2. Moreover, we suggest thaty* is
approximately constant for the morphology of well-
dispersed particles (y* ¼ 1.1). Based on Fig. 5 we know
that the values ofDT1,yp =T2D for PVC/NBR, PP/EPDM and
PP/EVA are smaller than ca. 29, 25 and 37%, respectively.

Now we calculate the realy* for the random close pack-
ing (rcp) system with uniform-sized particles using Eq. (19)
because it is an extreme case for the morphology of well-
dispersed particles. We may takeT < 0 since the majority of
particles are in contact,fmax ¼ 0.637 (experimental value
[42]) andj ¼ 1. Thus we havey* ¼ 1.07. This calculated
value is indeed around 1.1 and in the range of 1 to 1.2. One
may not say thaty* ¼ 1.07 is the only possible value for
the morphology of well-dispersed particles. This is
because the values ofL3D,i for the actual blends are not
identical and differ from those for the rcp system where
the values ofL3D,i are very similar and 1.07 is one of the
values ofy* for the morphology of well-dispersed particles.
However, it is difficult to obtain other values ofy* for the
morphology of well-dispersed particles. If an approximate
constanty* is found, one can simulate the morphology of
well-dispersed particles with the regular lattice whosey0 is
close to the approximate constanty*. In this case,y1 < 1.

Based on this criterion one can use one regular lattice in
Table 1.

It must be pointed out thaty* is proportional toL1 when
other parameters in Eq. (21) are identical. It is clear thatL1

increases with the nearest particle number for averagingL1.
So doesy*. Other theoretical simulations are required to
find out the dependence ofy* on the nearest particle number
for averagingL1. If an approximate constanty* that is
desired to have a weak dependence ond, j and f exists,
the corresponding nearest particle number for averagingL1

rather than other nearest particle numbers would be inter-
esting. For actual polymer blends, we think that drawing
scalene triangles connecting the centers of adjacent particles
on SEM or TEM micrographs to measureT2D,i may have the
least possibility of measuringT2D,k for any two non-
neighboring particles compared with other experimental
lattices. So, the lattice of scalene triangles is preferred.
However, the corresponding nearest particle number for
averagingL1 has not been estimated because we are inter-
ested more in an approximate constanty*. Experimental
results ofy* s for the above three actual polymer blends
suggest the existence of an approximate constanty* regard-
less of the number of nearest particles.

2.3. The pseudonetwork morphology

Fig. 6 shows the pseudonetwork morphology. The
pseudonetwork morphology is composed of two parts
[14,16]: (1) the pseudonetwork band phase containing the
particles uniformly dispersed in the band (dark dots) and the
polymer matrix, and (2) the pseudonetwork core phase
(dashed circles) consisting of polymer or inorganic fillers.
For simplicity of drawing, we present the pseudonetwork
cores as spheres. In fact, there is no shape restriction to the

Table 2
Morphological parameters for PVC/NBR, PP/EPDM and PP/EVA blends
with the morphology of well-dispersed particles (data taken from Ref. [15])

Morphological
parameters

Blends

PVC/NBR PP/EPDM PP/EVA

d, mm 0.073 0.51 0.32
j 1.58 2.31 1.59
f 0.136 0.243 0.243
T2D, mm 0.109 1.50 0.307

Fig. 5. Calculated variations ofDy* with DT1,yp =T2D for PVC/NBR, PP/
EPDM and PP/EVA blends. Fig. 6. The pseudonetwork morphology.
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pseudonetwork cores. The probability of finding a dispersed
particle (dark dots) in the pseudonetwork core phase is zero
[14]. However, the probability of finding a dispersed par-
ticle in the pseudonetwork band phase must be greater than
zero [14]. The pseudonetwork band phase is continuous
while the pseudonetwork core phase can be continuous or
discontinuous.

If the pseudonetwork band phase is regarded as a ‘blend’
with the morphology of well-dispersed particles [14,16], we
have

T2 ¼ d yp p

6F2

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35 (27)

whereF2 is the volume fraction of dispersed particles in the
imaginary blend with the morphology of well-dispersed
particles and the subscript ‘2’ denotes pseudonetwork
morphology.

The relation ofF2 to the volume fractionf of dispersed
particles in the whole sample is [14,16]

F2 ¼
f

y3
2

(28)

wherey2 is given by [14,16]

y2 ¼ 3
���������������
1¹ fev

p
(29)

wherefev is the volume fraction of pseudonetwork cores in
the whole sample. The subscript ‘ev’ denotes excluded
volume.

Insertion of Eq. (28) into Eq. (27) yields

T2 ¼ d ypp p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35 (30)

ypp ¼ y0y1y2 ¼ ypy2 (31)

wherey** is the absolute particle spatial distribution para-
meter for the pseudonetwork morphology.

From Eqs. (1), (19) and (30), the definition of the relative
particle spatial distribution parametery2 for the pseudonet-
work morphology is given by

y2 ¼

ypy2d
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

ypd
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¼
T2 þ d exp 0:5 ln2j

ÿ �
T1 þ d exp 0:5 ln2j

ÿ �¼
L2

L1
: ð32Þ

Therefore y2 is the ratio of L2 for the pseudonetwork
morphology toL1 for the morphology of well-dispersed
particles whend, j and f are identical. Because particles
in a blend with the pseudonetwork morphology are
uniformly dispersed in the pseudonetwork band phase, any
blend with the pseudonetwork morphology can be

reconstructed into an imaginary blend with the morphology
of well-dispersed particles. In other words, there is no
volume restriction to reconstruction during which the pseu-
donetwork core phase (excluded volume) is taken away
from the actual blend. So, the definition of Eq. (32) is always
valid. The difference between the pseudonetwork morphol-
ogy and the morphology of well-dispersed particles can be
corrected byy2. The difference between the pseudonetwork
morphology and a regular lattice can be corrected byy1y2.

2.4. The morphology of agglomerated particles

Fig. 7 displays the morphology of agglomerated particles.
This morphology consists of two main parts (see the upper
part of Fig. 7): (1) the particle cluster phase (dashed circles)
composed of the uniformly dispersed particles (dark dots)
and material (the white part in the dashed circles), and (2)
the excluded volume phase (outside the dashed circles)
where the probability of finding a dispersed particle is
zero. The excluded volume phase is continuous.

To correlate morphology parameters, we divide this mor-
phology (the upper part of Fig. 7) into two phases: the
particle cluster phase and the excluded volume phase (the
lower part of Fig. 7). If the particle cluster phase is regarded
as a ‘blend’ with the morphology of well-dispersed par-
ticles, we have

T3 ¼ d yp p

6F3

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35 (33)

Fig. 7. The morphology of agglomerated particles.
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whereF3 is the volume fraction of dispersed particles in the
imaginary blend with the morphology of well-dispersed par-
ticles and the subscript ‘3’ denotes morphology of agglom-
erated particles.F3 is given by

F3 ¼
V

V þ Vpc
(34)

whereV is the volume of particles in the entire sample, and
Vpc is the volume of the matrix contributing to the particle
cluster phase in the total sample.

The particle volume fractionf is

f ¼
V

V þ Vpc þ Vev
(35)

whereVev is the excluded volume in the total sample. The
total volume of the blend isV þ Vpc þ Vev. Therefore,f is
an experimental value.

The excluded volume fractionfev is

fev ¼
Vev

V þ Vpc þ Vev
: (36)

From Eqs. (34)–(36), we obtain the relation betweenF3, f

andfev

F3 ¼
f

1¹fev
: (37)

Let y3 be defined by

y3 ¼ 3
���������������
1¹ fev

p
: (38)

Thus

F3 ¼
f

y3
3

: (39)

Insertion of Eq. (39) into Eq. (33) yields

T3 ¼ d yppp p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35 (40)

wherey*** is given by

yppp ¼ y0y1y3 ¼ ypy3: (41)

From Eqs. (1), (19) and (40), we obtain the definition of
relative particle spatial distribution parametery3 for the
morphology of agglomerated particles

y3 ¼

ypy3d
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

ypd
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¼
T3 þ d exp 0:5 ln2j

ÿ �
T1 þ d exp 0:5 ln2j

ÿ �¼
L3

L1
: ð42Þ

Eq. (42) shows thaty3 is the ratio ofL3 for the morphology
of agglomerated particles toL1 for the morphology of well-
dispersed particles whend, j andf are identical. Particles in

a blend with the morphology of well-dispersed particles are
uniformly distributed in the particle cluster phase, any blend
with the morphology of agglomerated particles can be
reconstructed into an imaginary blend with the morphology
of well-dispersed particles. This means that there is no
volume restriction to reconstruction during whichVev is
taken away from the actual blend. So, the definition of
Eq. (42) is always valid too. The difference between the
morphology of agglomerated particles and the morphology
of well-dispersed particles can be corrected byy3. The dif-
ference between the morphology of agglomerated particles
and a regular lattice can be corrected byy1y3.

Comparing Eqs. (17), (19), (30) and (40) with each other,
we obtain a generalized equation for correlating morpholo-
gical parameters

T ¼ d y
p

6f

� � 1
3
exp 1:5 ln2j
ÿ �

¹ exp 0:5 ln2j
ÿ �24 35 (43)

wherey is given by

y ¼

y0 for a regular lattice

yp for the morphology of well¹ dispersed particles

ypp for the pseudonetwork morphology

yppp for the morphology of agglomerated particles:

8>>>>>><>>>>>>:
(44)

3. Particle dispersion vs morphology

Eq. (17) is exact for a regular lattice. However, none of
the actual morphologies, i.e., the morphology of well-
dispersed particles, the pseudonetwork morphology and
the morphology of agglomerated particles, is a regular
lattice. Additionally, the particle spatial distribution para-
metery0 for a regular lattice depends ona in Eq. (5), which
is a function ofL0 depending on the nearest particles for
averaging. So, it is clear that simulating an actual morphol-
ogy using a regular lattice will cause an error. This error can
be corrected using a particle spatial distribution parameter.

The particle spatial distribution parametery* for the
morphology of well-dispersed particles is greater than
those for the pseudonetwork morphology (y** ¼ y*y2)
and the morphology of agglomerated particles (y*** ¼

y*y3) since bothy2 andy3 are smaller than one. Neverthe-
less, one cannot distinguish the pseudonetwork morphology
from the morphology of agglomerated particles by the par-
ticle spatial distribution parameters defined in this work
because they are calculated using equations in the same
form (comparing (1): Eq. (29) with Eq. (38) and (2):
Eq. (31) with Eq. (41), respectively). It is also noted that a
difference between the two morphologies still exists. The
morphological descriptions on the three morphologies
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reveal that the phase continuities are different. A new mor-
phological parameter for characterizing the phase continuity
as well as the particle spatial distribution parameter may
be required for characterizing the type of morphology.
The phase continuity clearly affects the properties of
multiphase materials, e.g., the toughness of polymer
blends and the electrical resistivity of polymers blended
with conductive polymers or fillers. The pseudonetwork
morphology is the most favorable morphology for tough-
ening [26–39] or conducting [1] among the above actual
morphologies. Conversely, a blend with the morphology of
agglomerated particles is brittle or insulating. An intermedi-
ate behavior can be found in blends with the morphology of
well-dispersed particles. However, the difference of the
pseudonetwork morphology and the morphology of
agglomerated particles from the morphology of well-dis-
persed particles decreases with reducingfev. So, two para-
meters, the particle spatial distribution parameter and a
parameter for characterizing phase continuity, are required
to describe the type of morphology. But it is difficult to
incorporate the two parameters into one simple equation,
e.g., Eq. (43).

We now present some other models in the literature that
had been used to describe the spatial distribution, regardless
of a common imperfection of the first two models that the
spatial distribution parameter depends on the construction
of an arbitrary lattice grid. Gurland [4] suggested a quanti-
tative measure of the degree of homogeneity of particle
placement in the matrix as the standard deviation (dn) of
the particle spatial distribution parameter in small volumes
or areas of the mixture

dn ¼

������������������������������
1
N

∑N
i ¼ 1

ni ¹ n
ÿ �2

vuut (45)

whereN is the number of samples,ni is the observed number
of particles per unit volume in theith sample andn is the
arithmetic mean number of particles inN samples.

Obviously Eq. (45) predictsdn $ 0. For the morphology
of well-dispersed particles,dn is close to but not neces-
sarily equal to 0 since the change in the spatial disper-
sion is gradual and not abrupt. For non-uniform
dispersiondn is greater than zero. There is an excluded
volume for a blend with the pseudonetwork morphology
or the morphology of agglomerated particles, indicating
that particles in the blend are not uniformly dispersed.
So, the values ofdn for the two morphologies are greater
than zero. Moreover, one cannot distinguish the pseudo-
network morphology from the morphology of agglomer-
ated particles by thedn that is greater than zero. So, the
difference between the two morphologies cannot be pre-
dicted by Eq. (45). Jang and Chang [9] have proposed
modifications to Eq. (45), but the above mentioned prob-
lems have not yet been solved.

Tanaka and coworkers [5–7,18] proposed a position
distribution parameter P for characterizing spatial

distribution:

P¼

∑M
i ¼ 1

pi ln pi

ln
1
M

� � (46)

pi ¼
bi∑M

i ¼ 1
bi

(47)

whereM is the total number of grids andbi the particle area
in the ith grid.

P approaches unity when the particles are uniformly dis-
persed, for instance in a blend with the morphology of well-
dispersed particles. For non-uniform dispersion, i.e., the
pseudonetwork morphology and the morphology of
agglomerated particles,P is smaller than unity. However,
if a blend has aP value that is smaller than unity, it is not
possible to tell whether it has the pseudonetwork morphol-
ogy or the morphology of agglomerated particles.

The dispersion index defined by Suetsugu [8] is

Dispersion index¼ 1¹ Fa (48)

whereFa is an area fraction of agglomerates defined by

Fa ¼
p

4Af

∑N
i ¼ 1

niD
2
i (49)

whereA is the area under observation,f the particle volume
fraction, Di the diameter of an agglomerate andni the
number of agglomerates.

It was suggested that the dispersion index ranges between
0 for the worst case of dispersion and 1 for the best disper-
sion [8]. TheFa for the best dispersion equals 0 since all the
particles are well separated and there is no agglomerate
(Di ¼ 0). Thus the dispersion index for the best dispersion
is 1. The values of dispersion index for the morphology of
well-dispersed particles, the pseudonetwork morphology
and the morphology of agglomerated particles are equal to
1 because all the particles in a blend with one of these three
morphologies are well separated and there is no agglomerate
(Di ¼ 0 andFa ¼ 0). So, the three morphologies cannot be
distinguished by the dispersion index.

Chang and Nemeth [10] also gave a description of
particle dispersion by

NPP¼
Vag

VPP
>

D3
w,ag

D3
w, PP

(50)

where NPP is called the agglomeration index and is the
number of primary particles in the particle agglomerate,
Vag is the volume of agglomerated particles,VPP is the
volume of primary particles,Dw,ag is the weight-average
particle diameter for particles in the particle agglomerate
and Dw,PP is the weight-average particle diameter for
primary particles.
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NPP $ 1 according to its definition. The smaller theNPP,
the better the dispersion. In general, the values ofNPPfor the
pseudonetwork morphology, the morphology of well-
dispersed particles and the morphology of agglomerated
particles are equal to one because particles in a blend with
one of these morphologies are well separated (Dw,ag ¼

Dw,PP). So, the three types of morphologies cannot be
distinguished byNPP.

4. Conclusions

The values of the particle spatial distribution parameter
for 8 regular lattices have been evaluated. For a given lattice
the particle spatial distribution parameter have several
values. It is also possible that the particle spatial distribution
parameter for a regular lattice is the same as that for another
regular lattice. So, the particle spatial distribution parameter
is not a unique parameter for determining the dispersion
state of particles occupying a regular lattice.

Definitions for the particle spatial distribution parameter
of three different actual morphologies, the morphology of
well-dispersed particles, the pseudonetwork morphology
and the morphology of agglomerated particles, have been
proposed. For the morphology of well-dispersed particles,
particles are uniformly dispersed in the polymer matrix, so
the probability of finding a particle in the polymer matrix is
not zero. There are excluded volumes in the latter two
morphologies and the probabilities of finding a particle in
the excluded volumes are zero. Particles in the pseudo-
network band phase are also uniformly dispersed; the
pseudonetwork band phase is continuous while the pseudo-
network core phase (excluded volume) can be either con-
tinuous or discontinuous. For the morphology of
agglomerated particles, particles in the particle cluster
phase are uniformly dispersed; the particle cluster phase is
discontinuous while the excluded volume is continuous. The
latter two morphologies will transform into the morphology
of well-dispersed particles when the excluded volume
fraction is zero. We have emphasized the importance of a
morphological parameter for characterizing the phase con-
tinuity but have not been able to give a definition.

The relationship between the experimental value (2D) of
average matrix ligament thickness and the real one (3D) for
the morphology of well-dispersed particles has been quali-
tatively analyzed. It has been proved that the former are
larger than the latter. For the morphology of well-dispersed
particles, the absolute particle spatial distribution parameter
is proportional to the center to center interparticle distance
when the other parameters in Eq. (21) are identical. Drawing
scalene triangles connecting the centers of adjacent particles
on SEM or TEM micrographs to measure average matrix
ligament thickness had been suggested [41] and was used
for PVC/NBR, PP/EPDM and PP/EVA blends by the
authors [13]. The calculated values of the absolute particle
spatial distribution parameter for PVC/NBR, PP/EPDM and

PP/EVA blends with the morphology of well-dispersed
particles are 1.21, 1.18 and 1.16, respectively [15]. There-
fore the highest value for the absolute particle spatial dis-
tribution parameter of actual blends with well-dispersed
particles is about 1.2. We have shown that the absolute
particle spatial distribution parameter for the morphology
of well-dispersed particles must be greater than one [15].
Therefore, the absolute particle spatial distribution para-
meter for the morphology of well-dispersed particles lies
between 1 and ca. 1.2. The absolute particle spatial distri-
bution parameter for the random close packing system (an
extreme case of the morphology of well-dispersed particles)
with uniform-sized particles is 1.07. We have shown that
even a large error in the arithmetic average matrix ligament
thickness leads to a small change (at most ca. 0.2–0.3) in the
absolute particle spatial distribution parameter for the
morphology of well-dispersed particles. So, we suggest
that the absolute particle spatial distribution parameter for
the blends with the morphology of well-dispersed particles
may be roughly constant (,1.1).

We have derived a generalized equation (Eq. (43)) for
relating the arithmetic average matrix ligament thickness
(average surface to surface interparticle distance) to the
average particle size, particle size distribution, particle
volume fraction and particle spatial distribution parameter
for polymer blends or composites with spherical particles
obeying to the log-normal size distribution. The particle
spatial distribution parameters for a regular lattice and
three actual morphologies have been correlated. The
absolute particle spatial distribution parameter for the mor-
phology of well-dispersed particles is greater than those for
the pseudonetwork morphology and the morphology of
agglomerated particles. However, one cannot distinguish
the pseudonetwork morphology from the morphology of
agglomerated particles by the particle spatial distribution
parameter defined in this work.

It has also been shown that the above three actual
morphologies cannot be well distinguished using the para-
meters previously defined in the literature.
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